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Recap: MDPs

= Markov decision processes:
= States S
= Actions A
" Transitions P(s’|s,a) (or T(s,a,s’))
» Rewards R(s,a,s’) (and discount v)
= Start state s,

= Quantities:
" Policy = map of states to actions
= Utility = sum of discounted rewards
» Values = expected future utility from a state (max node)
= Q-Values = expected future utility from a g-state (chance node)



Optimal Quantities

"= The value (utility) of a state s:
V*(s) = expected utility starting in s and

. _ sisa
acting optimally state
= The value (utility) of a g-state (s,a): és_’;gti: :

Q’(s,a) = expected utility starting out -
having taken action a from state s and s,a,s’ (s,a,s) is a
(thereafter) acting optimally transition

=" The optimal policy:
n'(s) = optimal action from state s

[Demo: gridworld values (L9D1)]



The Bellman Equations

How to be optimal:

Step 1: Take correct first action




The Bellman Equations

= Definition of “optimal utility” via expectimax
recurrence gives a simple one-step lookahead
relationship amongst optimal utility values 7

V*(s) = max Q*(s, a)

Q*(s,a) =} T(s,a,5) {R(S, a,s’) + ’yV*(s’)} o

V*(s) = mO?XZT(S,a, s") {R(s,a, s") + ny*(s')}

" These are the Bellman equations, and they characterize
optimal values in a way we’ll use over and over



Policy Methods




Policy Evaluation




Fixed Policies

Do the optimal action Do what 7 says to do

-"s,a,S

;\A
A s

= Expectimax trees max over all actions to compute the optimal values

= |f we fixed some policy 1t(s), then the tree would be simpler — only one action per state
= .. though the tree’s value would depend on which policy we fixed



Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy m:
V™(s) = expected total discounted rewards starting in s and following &t

Recursive relation (one-step look-ahead / Bellman equation):

VT(s) =) T(s,m(s),s)R(s,7(s),8) + V()]



Policy Evaluation

How do we calculate the V’s for a fixed policy ©?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Vo(s) =0 ,s;”%f(s),s’
.

ka—l—l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + kaW(S’)]

S

Efficiency: O(S?) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
= Solve with Matlab (or your favorite linear system solver)



Example: Policy Evaluation

Always Go Right Always Go Forward




Example: Policy Evaluation

Always Go Right Always Go Forward




Policy Extraction




Computing Actions from Values

Let’s imagine we have the optimal values V*(s)

How should we act?

=" |t’s not obvious!

We need to do a mini-expectimax (one step)

m*(s) = arg Cl;naXZT(s, a,s)[R(s,a,s) +~V*(s)]

S

This is called policy extraction, since it gets the policy implied by the values



Computing Actions from Q-Values

= Let’s imagine we have the optimal g-values: WW
ANV
* How should we act? v‘.}‘
= Completely trivial to decide! e °'89 00

" |mportant lesson: actions are easier to select from g-values than values!




Policy Iteration




Problems with Value Iteration

= Value iteration repeats the Bellman updates:

Vi41(s) < mC?XZT(S,a, s") [R(s,a, s + 'ka(s’)]

S

= Problem 1: It’s slow — O(S2A) per iteration

" Problem 2: The “arg max” at each state rarely changes

= Problem 3: The policy often converges long before the values

[Demo: value iteration (L9D2)]
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Policy Iteration

= Alternative approach for optimal values:

= Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal
utilities!) until convergence

= Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

= Repeat steps until policy converges

= This is policy iteration
= |t’s still optimal!

= Can converge (much) faster under some conditions



Policy Iteration (Pl)

= Evaluation: For fixed current policy =, find values with policy evaluation:
= |terate until values converge:

Vit 1 (s) < Y. T(s,mi(s),s') |R(s,mi(s),s") + v V(s

= |mprovement: For fixed values, get a better policy using policy extraction
= One-step look-ahead:

mi4+1(s) = arg maXZT(S, a,s) {R(s, a,s’) + ’yVWi(S/)}

S



Convergence of Pl

= 1. Improvement: Does each policy improvement step produce a better policy?

= 2. Convergence: Does Pl converge to an optimal policy?



Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:

= Every iteration updates both the values and (implicitly) the policy
= We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:

= We do several passes that update utilities with fixed policy (each pass is fast because we
consider only one action, not all of them)

= After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
" The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs



Recap: MDP Algorithms

= S0 you want to....
= Compute optimal values: use value iteration or policy iteration
= Compute values for a particular policy: use policy evaluation
" Turn your values into a policy: use policy extraction (one-step lookahead)

" These all look the same!
* They basically are —they are all variations of Bellman updates
" They all use one-step lookahead expectimax fragments
» They differ only in whether we plug in a fixed policy or max over actions



Planning Requires a Model!




Planning Requires a Model!

Overheated



Planning vs. Learning

= Markov decision processes:
= States S
= Actions A
" Transitions T(s,a,s’) = P(s’|s,a)
= Rewards R(s,a,s’)
= Discounty
= Start state s,

How can we learn these quantities?



One-Arm Bandits




Double-Bandit MDP

= Actions: Blue, Red
= States: Win, Lose




MDP Planning

= Solving MDPs is offline planning

" You determine all quantities through computation
" You need to know the details of the MDP
" You do not actually play the game!

-

-

Value
Play Red 150
Play Blue 100

\




Let’s Play!

S2 S2 SO0 S2 S2
S2 $2 SO0 SO SO



Planning With an Unknown Model

= Rules changed! Red’s win chance is different.




Let’s Play!

SO SO SO S2 SO
S2 SO0 SO SO SO



What Just Happened?

» That wasn’t planning, it was learning!
= Technically, reinforcement learning
" There was an MDP, but you couldn’t solve it with just computation
" You needed to actually act to figure it out

" |[mportant ideas in machine learning that came up
= Sampling: because of chance, you have to try things repeatedly
" Parameter estimation: what is the most likely explanation of the data?
* More data = better estimates



